
DM5414/DM7414 Hex Inverter with Schmitt Trigger Inputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Connection Diagram

Order Number DM5414J, DM5414W or DM7414N See NS Package Number J14A, N14A or W14B

Function Table

$\mathbf{Y} = \overline{\mathbf{A}}$					
Input	Output				
Α	Y				
L	Н				
Н	L				

$$\begin{split} \mathsf{H} &= \mathsf{High} \; \mathsf{Logic} \; \mathsf{Level} \\ \mathsf{L} &= \mathsf{Low} \; \mathsf{Logic} \; \mathsf{Level} \end{split}$$

TL/F/6503-1

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range

Storage Temperature Range $-65^{\circ}\text{C to} + 150^{\circ}\text{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

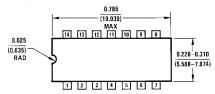
Recommended Operating Conditions

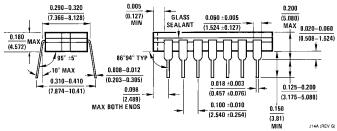
Symbol	Parameter	DM5414			DM7414			Units
		Min	Nom	Max	Min	Nom	Max	Oilles
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{T+}	Positive-Going Input Threshold Voltage (Note 1)	1.5	1.7	2	1.5	1.7	2	V
V _T -	Negative-Going Input Threshold Voltage (Note 1)	0.6	0.9	1.1	0.6	0.9	1.1	V
HYS	Input Hysteresis (Note 1)	0.4	0.8		0.4	0.8		V
Іон	High Level Output Current			-0.8			-0.8	mA
l _{OL}	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics

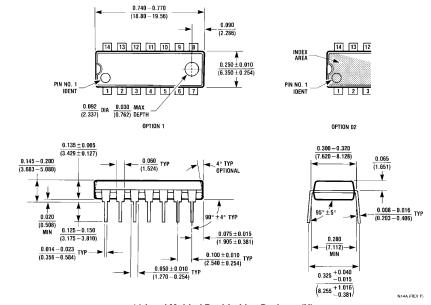
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_{I} = -12 \text{ mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{I} = V_{T} - Min$		2.4	3.4		٧
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{I} = V_{T+}Max$			0.2	0.4	V
I _{T+}	Input Current at Positive-Going Threshold	$V_{CC} = 5V, V_I = V_{T+}$			-0.43		mA
I _T _	Input Current at Negative-Going Threshold	$V_{CC} = 5V, V_I = V_{T-}$			-0.56		mA
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$				40	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-1.2	mA
los	Short Circuit	V _{CC} = Max	DM54	-18		-55	mA
Output Current	(Note 3)	DM74	-18		-55	111/4	
I _{CCH}	Supply Current with Outputs High	V _{CC} = Max			22	36	mA
I _{CCL}	Supply Current with Outputs Low	V _{CC} = Max			39	60	mA

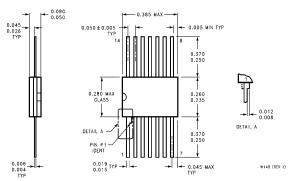

Note 1: $V_{CC} = 5V$


Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time.


$\textbf{Switching Characteristics} \text{ at V}_{CC} = 5 \text{V and T}_{A} = 25 ^{\circ} \text{C (See Section 1 for Test Waveforms and Output Load)}$							
Symbol	Parameter	Conditions	Min	Max	Units		
t _{PLH}	Propagation Delay Time Low to High Level Output	$C_L = 15 \text{ pF}$ $R_L = 400\Omega$		22	ns		
t _{PHL}	Propagation Delay Time			22	ns		

Physical Dimensions inches (millimeters)



14-Lead Ceramic Dual-In-Line Package (J) Order Number DM5414J NS Package Number J14A

14-Lead Molded Dual-In-Line Package (N) Order Number DM7414N NS Package Number N14A

Physical Dimensions inches (millimeters) (Continued)

14-Lead Ceramic Flat Package (W) Order Number DM5414W NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwgs@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408